0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 796 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 352 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 RewriteLemmaProof (LOWER BOUND(ID), 687 ms)
↳14 BEST
↳15 typed CpxTrs
↳16 LowerBoundsProof (⇔, 0 ms)
↳17 BOUNDS(n^2, INF)
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^2, INF)
↳21 typed CpxTrs
↳22 LowerBoundsProof (⇔, 0 ms)
↳23 BOUNDS(n^2, INF)
↳24 typed CpxTrs
↳25 LowerBoundsProof (⇔, 0 ms)
↳26 BOUNDS(n^1, INF)
p(s(x)) → x
fact(0) → s(0)
fact(s(x)) → *(s(x), fact(p(s(x))))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
p(s(x)) → x
fact(0') → s(0')
fact(s(x)) → *'(s(x), fact(p(s(x))))
*'(0', y) → 0'
*'(s(x), y) → +'(*'(x, y), y)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
They will be analysed ascendingly in the following order:
*' < fact
+' < *'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
+', fact, *'
They will be analysed ascendingly in the following order:
*' < fact
+' < *'
Induction Base:
+'(gen_s:0'2_0(a), gen_s:0'2_0(0)) →RΩ(1)
gen_s:0'2_0(a)
Induction Step:
+'(gen_s:0'2_0(a), gen_s:0'2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0))) →IH
s(gen_s:0'2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
*', fact
They will be analysed ascendingly in the following order:
*' < fact
Induction Base:
*'(gen_s:0'2_0(0), gen_s:0'2_0(b)) →RΩ(1)
0'
Induction Step:
*'(gen_s:0'2_0(+(n457_0, 1)), gen_s:0'2_0(b)) →RΩ(1)
+'(*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)), gen_s:0'2_0(b)) →IH
+'(gen_s:0'2_0(*(c458_0, b)), gen_s:0'2_0(b)) →LΩ(1 + b)
gen_s:0'2_0(+(b, *(n457_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
fact
Induction Base:
fact(gen_s:0'2_0(0))
Induction Step:
fact(gen_s:0'2_0(+(n1007_0, 1))) →RΩ(1)
*'(s(gen_s:0'2_0(n1007_0)), fact(p(s(gen_s:0'2_0(n1007_0))))) →RΩ(1)
*'(s(gen_s:0'2_0(n1007_0)), fact(gen_s:0'2_0(n1007_0))) →IH
*'(s(gen_s:0'2_0(n1007_0)), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
fact(gen_s:0'2_0(n1007_0)) → *3_0, rt ∈ Ω(n10070)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
fact(gen_s:0'2_0(n1007_0)) → *3_0, rt ∈ Ω(n10070)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_s:0'2_0(n457_0), gen_s:0'2_0(b)) → gen_s:0'2_0(*(n457_0, b)), rt ∈ Ω(1 + b·n4570 + n4570)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.